
Modelling and Testing Requirements

via Executable Abstract State Machines

Model-Driven Requirements Engineering
(MoDRE)

August 20, 2018 / Banff, Canada

Jonathan S. Ostroff and Chen-Wei Wang

Case Study: An E-Health System

● Patients are prescribed to medications.● Medications may have dangerous interactions.
e.g., warfarin and aspirin both increase anti-coagulation

● Goal: No dangerous interactions in patients’ prescriptions.

image source: https://www.canstockphoto.ca
2 of 16

Research Problem

Given informal requirements describing the problem domain,
how can we facilitate the process of developing working code
in the solution domain?

We present a method for facilitating this process:
from requirements to formal , executable specifications.

3 of 16

Contributions

● ETF (Eiffel Testing Framework)○ Generates code stub for developing business logic○ Supports acceptance testing via a given Abstract User Interface● Mathmodels programming library○ Specifies business logic as abstract state machines

Metamodel:
Language for Specifying

User Interfaces

ETF (Eiffel Testing Framework):
Code Generator for

Business Logic stub and Acceptance
Testing via an Abstract User Interface

User Commands

Architecturally Structured, Executable Code

Business Model

Mathmodels:
Language for

Specifying Business Logic
as Abstract State Machines

EHealth acceptance tests

EHealth UI grammar

data flow

dependency

Requirements Engineers
Customers

Requirements Document

● Scalable to large systems via Runtime Contract Checking.
4 of 16

Requirements Elicitation (1)

ENV -descriptions document environment constraints or assumptions.

ENV1 Physicians prescribe medications to patients.

ENV2 There exist pairs of medications that when taken together
have dangerous interactions.

ENV3 If one medication interacts with another, then the reverse
also applies (Symmetry).

ENV4 A medication does not interact with itself
(Irreflexivity).

reflected in Mathmodels
5 of 16

Requirements Elicitation (2)

REQ-descriptions document what the machines must produce.

REQ5 The system shall maintain records of dangerous medication interactions.

REQ6 The system shall maintain records of patient prescriptions. No prescription may have
a dangerous interaction.

REQ7 Physicians shall be allowed to add a medication to a patient’s prescription, provided it
does not result in a dangerous interaction.

REQ8 It shall be possible to add a new medication interaction to the records, provided that
it does not result in a dangerous interaction.

REQ9 Physicians shall always be allowed to remove a medication from a patient’s prescrip-
tion.

reflected in Mathmodels
6 of 16

Abstract User Interface

system ehealth

-- semantics types

type MEDICATION = STRING

type PATIENT = STRING

-- events

add_patient (p: PATIENT)

add_medication (m: MEDICATION)

add_interaction (m1: MEDICATION; m2: MEDICATION)

add_prescription (p: PATIENT; m: MEDICATION)

remove_interaction (m1: MEDICATION; m2: MEDICATION)

remove_prescription (p: PATIENT; m:MEDICATION))

Abstract UI may later be implemented using concrete desktop,
mobile, or web interface.

7 of 16

Abstract State

Types of abstract state variables:

patients ∈ PPATIENT
medications ∈ PMEDICATION
interactions ∈ MEDICATION↔MEDICATION
prescriptions ∈ PATIENT ↔MEDICATION

Example abstract state in ASCII form:

patients: {p1, p2, p3}
medications: {m1, m2, m3, m4}
interactions: {m1 -> m2, m2 -> m1}
prescriptions: {p1 -> m1, m3; p3 -> m2,m4}

8 of 16

Acceptance Test

...

state 16

patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1,m2->m4,m4->m2}
prescriptions: {p1->m1,m3; p3->m2}
->add_prescription("p3","m4")
state 17 Error e4: this prescription dangerous

->remove_interaction("m2","m4")
state 18

patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1}
prescriptions: {p1->m1,m3; p3->m2}
->add_prescription("p3","m4")
state 19

patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1}
prescriptions: {p1->m1,m3; p3->m2,m4}

9 of 16

Architecturally Structured Generated Code

● Given an abstract UI, ETF generates architecturally structured code.

COMMAND

ETF_ADD_PATIENT ETF_ADD_INTERACTION ...

MODEL

PATIENTMEDICATION

Model

User Commands

User

● Business logic is specified and implemented in the MODEL package.● Error handling is implemented in the User Commands package.
10 of 16

The Mathmodels Library

class

REL[G, H]
inherit

SET[TUPLE[G, H]]
feature -- immutable queries

domain: SET[G]
range: SET[H]
image alias ‘‘[]’’ (g: G): SET[H]
extended alias ‘‘+’’ (p: TUPLE[G, H]): REL[G, H]
overriden by (p: TUPLE[G, H]): REL[G, H]

feature -- mutable commands

extend (p: TUPLE[G, H])
override (p: TUPLE[G, H])

...
end

○ Immutable queries for specifying precise contracts.○ Mutable commands for making executable Abstract State Machine.○ There are other classes in Mathmodels library: SET, FUN, BAG.
11 of 16

Mathmodels vs. Math

● Recall the informal R-description:

REQ6 The system maintains records of patient prescriptions. No pre-
scription may have a dangerous interaction.

● How to formulate it using set theory and predicate logic?∀p ∈ patients;m1,m2 ∈medications ∶
p ∈ dom(prescriptions) ∧m1 ≠m2 ∧ (m1,m2) ∈ interactions⇒ ¬((p,m1) ∈ prescriptions ∧ (p,m2) ∈ prescriptions)● How to make the above formula executable and traceable ?

no dangerous interactions REQ6 :
across prescriptions.domain as p all

across prescriptions[p.item] as m1 all

across prescriptions[p.item] as m2 all

interactions.has ([m1.item, m2.item])
implies

not(prescriptions.has([p.item, m1.item]) and prescriptions.has([p.item, m2.item]))
end end end

12 of 16

Using Mathmodels to Contract Abstract State

Invariants are traceable back to ENV- and REQ-descriptions.
class

HEALTH SYSTEM
feature -- abstract state

patients: SET [PATIENT]
medications: SET [MEDICATION]
prescriptions: REL [PATIENT, MEDICATION]
interactions: SET [INTERACTION]

invariant

symmetry ENV3:
across medications as m1 all

across medications as m2 all

interactions.has ([m1.item, m2.item]) = interactions.has ([m2.item, m1.item])
end end

irreflexivity ENV4:
across medications as m1 all not interactions.has ([m1.item, m1.item]) end

no dangerous interactions REQ6:
across prescriptions.domain as p all

across prescriptions [p.item] as m1 all

across prescriptions [p.item] as m2 all

interactions.has ([m1.item, m2.item])
implies not(prescriptions.has([p.item,m1.item]) and prescriptions.has([p.item,m2.item]))

end end end

consistent domain:
prescriptions.domain ⊆ patients

end

13 of 16

Using Mathmodels to Contract Actions

State updates are contracted with pre-conditions and post-conditions.

REQ7 Physicians shall be allowed to add a medication to a patient’s prescription, provided it
does not result in a dangerous interaction.

class

ADD PRESCRIPTION
inherit

HEALTH SYSTEM -- inherits all system invariants

feature -- commands

add prescription (p: PATIENT; m: MEDICATION)
-- Add a prescription of ’m1’ to ’p1’.

require

-- p ∈ patients

patients.has (p)
-- m ∉ prescriptions[p]

not prescriptions[p].has (m)
-- cannot cause a dangerous interaction

-- ∀med ∈ prescriptions[p] ∶ (med,m) ∉ interaction
across prescriptions[p] as med all not interactions.has([med.item, m]) end

do

prescriptions.extend ([p, m])
ensure

prescriptions ∼ old prescriptions + [p, m]
-- UNCHANGED (patients, medications, interactions)

end

end

14 of 16

Summary

● ETF (Eiffel Testing Framework) [code generator]● Mathmodels programming library [specification language]

Metamodel:
Language for Specifying

User Interfaces

ETF (Eiffel Testing Framework):
Code Generator for

Business Logic stub and Acceptance
Testing via an Abstract User Interface

User Commands

Architecturally Structured, Executable Code

Business Model

Mathmodels:
Language for

Specifying Business Logic
as Abstract State Machines

EHealth acceptance tests

EHealth UI grammar

data flow

dependency

Requirements Engineers
Customers

Requirements Document

The proposed method adopts Design-by-Contract (DbC) and
Eiffel programming IDE .⇒ Scalable to large systems via Runtime Contract Checking.

15 of 16

Index (1)

Case Study: An E-Health System

Research Problem

Contributions

Requirements Elicitation (1)

Requirements Elicitation (2)

Abstract User Interface

Abstract State

Acceptance Test

Architecturally Structured Generated Code

The Mathmodels Library

Mathmodels vs. Math

Using Mathmodels to Contract Abstract State

Using Mathmodels to Contract Actions

Summary
16 of 16

